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Abstract

The author studies objects provided from two linear parallel displacements. One
is a difference of two parallel vectors provided from linear parallel displacements
along two one way courses of an infinitesimal parallelogram. One of the others is
a difference between an initial vector and a vector provided from a linear parallel
displacement going around an infinitesimal parallelogram. The author guesses these
objects are quantity to evaluate “a curvature” in each point of a Finsler space. To
prove them is a problem of the future.

Keywords and phrases : linear parallel displacement, infinitesimal parallelogram,
parallel vector, Finsler geometry.

Introduction

In Riemannian geometry, it is well known that a difference between an initial vector and
a parallel vector provided by a parallel displacement along an infinitesimal parallelogram
is evaluated by curvature. The author wants to study a similar thing by using a linear
parallel displacement of Finsler geometry. It is not only calculations but also to clarify
what kind of information about “a curvature”. However, it is not done yet in this paper.

In §2 and §3, the author calculates a difference of a parallel vector with two cases. In
Case I, by using two one way courses and, in Case II, by using a loop along an infinitesimal
parallelogram the differences are obtained, respectively. In Riemannian geometry, these
two differences are the same but in Finsler geometry they are different(Theorem 3.1). The
important points in calculations are we must do them on T'M and pay attentions to the
degree of approximations and the tensorial property.

Linear parallel displacement is stated in detail in [4],[5] and [6] by the author. The
terminology and notations are referred to the books [2] and [3]. Here the author greatly
appreciates very useful suggestions and kindness of Prof.T.Aikou.

1 A linear parallel displacement along a curve

First, we put terminology and notations used in this paper. Let M be an n-dimensional
differentiable manifold and FT' = (N/(z,y), F},(x,y), C},(x,y)) Finsler connection(or the
coefficients of a Finsler connection FT'), and all of objects appeared in this paper (curves,
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vector fields, etc) are differentiable. In additions, indexes a,b, ¢, -+, h,%, 5, k, [,m,--- run
on 1 to n. Further let TM be the tangent bundle of M.

Now, for a vector field on a curve ¢ with a parameter ¢, we give a following definition
of linear parallel displacements along c.

Definition 1.1 For a curve ¢ = (c'(t)) (a <t < b) and a vector field v = (v'(t)) along
¢, if the equation
dvt . dc”
v z Al = AT =
(1.1) R Fj(c,e)¢" =0 (¢ o )

is satisfied, then v is called a parallel vector field along ¢, and we call the linear map
I.: v(a) — wv(b) a linear parallel displacement along c.

Remark 1.1 We can see that the differential equation (1.1) is linear with respect to a
vector field v. Then a linear parallel displacement 11, is regular, namely, one to one and
on to, because of the uniqueness of the solution of the differential equation (1.1).

We state the geometrical meaning of Definition 1.1. Let H be the collection of hori-
zontal vectors at every point (z,y) on the tangent bundle T'M, namely

.0 o
(1.2) H= U {z‘(w € TiuyTM ’ S horizontal bases of T(xyy)T]V[} .

(z,y)eTM

Then H is a subbundle of the bundle TT M.

H has a local coordinate system {(z*,y", 2*)}. This system have the coordinate transforma-
tion (2%, %, 2') — (7%, %, z%) attended with a coordinate transformation (z*) — ()
of M, where

= 1%(x)
I j&f“
o1
s _ 397
- M
If we put F} = 2"F};, then we can take a differential operator with respect to z*
oH 0 5} 9]
(14) oxt Ox' L oy" L0z

Now, for a curve ¢ = (¢'(t)) on M and a vector field v = (v'(t)) along ¢, we take the

S ¢
lift ¢ = (¢, ¢*,v") to H and calculate the tangent vector — of & Then we have

dt

@_dci 0 eréi 0 ervi 0
dt — dt oxt  dt Oyt dt 9%

(1.5) )

o dét oo\ 0 dvt
=5 + <dt + Ni(c,¢)é ) o7 + ( 7 + v Fj,(c, ¢)¢ > Ee

Therefore Definition 1.1 means that the lift ¢ is horizontal of H. So we have
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Proposition 1.1 If a vector field v = (vi(t)) along a curve ¢ = (c'(t)) is parallel along
¢, then the lift ¢ = (¢, ¢,v) to H is horizontal. The inverse property is also true.

Remark 1.2 Now, we already know a definition of a parallel displacement along c. It
is as follows

Definition 1.2 ([1]) For a curve ¢ = (c'(t)) and a vector field v = (v'(t)) along c, if
the equations

' der
ch ev)d=0 (=%

(1.6)

are satisfied, then v is called the parallel vector field along the curve c.

This parallel displacement is not linear with respect to the vector field v and the meaning
of this definition is for the lift ¢ = (c,v) to TM to be a horizontal curve on TM.

2 Linear parallel displacements along an infinitesimal
parallelogram

We study two cases. One is the case that makes an initial vector be two parallel vector
fields along two routes(Case I), and the other is the case making a parallel vector field
along one loop(Case II). Hereafter, we assume all points and curves are in one coordinate
neighborhood and FT satisfies the torsion tensor field T} (x,y) = Fjy.(z,y)— F};(x,y) = 0.
Further the coefficients N(z,y), ij(x, y) are positively homogeneous degree 1 and 0 with
respect to y, respectively.

Case I. Let p,q,r, s be four points on M and (z%), (z' + &), (2 + & + n'), (z° + ')
coordinates, respectively. Further,cy, ¢a, c3, ¢4 are following curves with a parameter ¢ (0 <

t<1):
a(t) :
(1)
(’3(1L
(

64)

2'(t) =2’ + 1 (p to q),
a(t) =a' + &+t (g tor),
a'(t) =2+t (ptos),
2i(t) =2+t + 1€ (s tor).

We take two routes ¢ = ¢; +c2(p — ¢ — r) and @ = ¢3 + cu(p — s — r), and

consider linear parallel displacements along ¢ and ¢, respectively.

Let V = (V*) be an

initial vector at p and Vi, V, the value at ¢ and 7 by the parallel vector field along c
respectively. Further, let Vi, V. the value at s and r by the parallel vector field along ¢,

respectively(See Figure 1).

Our standpoint is to investigate the difference V, —

V,. First, we move the initial

vector V' from p(z?) to q(x' + &) by the linear parallel displacement along ¢; and obtain
Vg Then V, =V +4dV, dV’ + Fj;(z,§)V"€7 = 0 are satisfied. Therefore, we have

(2.1)

Flij(xv E)thj
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Figure 1: Case [

Next, we move V; from g(z +¢') to r(z" + & +7') along c;. Then V, =V, + dV, % +
F, ,ij(x + £, n)I/:]th = 0 are satisfied. In addition we have the following Taylor expansion

i

, : OFy. OF;.
(22)  Fyla+&m) = Fyle§ + 5@ 08 + @ O — ) +

So we have

(2.3)

Vi= V) = Fiy(e + &)V
=V'— F(z,e)Vh¢

. OFy,; 8F .
= (Fyy(z.6) + 57 (=, )" + (ﬂf " =€)+ )V = Fry(z, Ve
= VZ - F;Lj('l'g)vhg] - th(l'v g)vh(’]

OF. ,
— M (g, )V —

Ok z, &) (" — )V +th($ FN (z, Ve +

Ok (
Further, by the similar calculation for V,, we have

(2.4)
Vi= V= F (xq)V' — Fy (e )V

OF! . - OF o _
- 3;5 (z,mn*Vhe — ay}f (@, ) (" =)WV + Fyj(w,n)Epy (2w, m) V'€’ +

where we use the following Taylor expansion at s

_ . OF oF;,
(25) Flx+n,8=F(@n)+ 8;;” (0" + o L) (€ —n*) +

Remark 2.1 In (2.3) and (2.4), (---) expresses 3rd and more order terms with respect
to &,m. We use this expression in this paper, frequently.
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Therefore the following equation, from (2.3) and (2.4)
(2.6)
V=V = (0, V€ + Bz VP

OF} . OF;,
+ 5, L VI S oy Ha )0 = MV = By, ) Fyy (2. Ve
= Fyy(z,m)Vhy = Fyy(w,m Vel

F;l k hej thJ k he¢j i h m,leg

F;L ( )Vhéj + Flij<$7 5)Vh777 - F}LL](I7 77)Vh77] - F;LJ(‘/E7 77)Vh§7

+ O 0, €) o — €V — O et v

(o eyt = O0 0V — B € Pl e, V€ + By o) Pl ) V™16 +
=w%mo—ﬁﬂmmw+w>wﬁ%ma¢+§%mmeKfﬂ

0,6 = O (10— P 0. PR30 )+ Folom) Y€V +

is satisfied. So we have

Proposition 2.1 Let M be an n-dimensional differentiable manifold with a Finsler
connection FT' = (Ni(z,y), Fji(r,y), Cii(x,y)) satisfying Ty (z,y) = 0. For an in-
finitesimal parallelogram defined by (I) and an initial vector V = (V*), we have vectors
V., = (V),V, = (V). Then the difference V' — V' is written in the following form

(2.7)
o Z. Z. S OF, OF};
V=V =[(F (&) — Fy(x,m) (& +nf)+<ayk (z,&)n’ + o L&) (n* — &)
0L, OFy

Case II. Let four points p,q,r, s be the same in Case I. However, curves cs,c, are
different from (I) as follows

ci(t) a:‘(t) '+ 1€ (p to q),

(11) cot) a:‘(t) ot &+ tn (q to ),
es(t)r @'(t) =a' + &+ — € (1 to s),
ca(t) o 2'(t) = 2" +n—tn' (s top),

where 0 <t < 1.
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ARV V.

\ V.
n S :3 . C3

Figure 2: Case II

the parallel vector field along c at g,r, s, respectively. Further, let V be the value at the
end point p(See Figure 2).

In this time, we investigate the difference V V. First, we have the same formation
(2.3) as V, until r. Next, from V, = V, + dV;, &= + Fij(z + &40, —VH(—¢) =0, we
have
Vi=V = By, V' = Fyy(x, )V’

OF}. , . OF;; ‘ . , .
— Gt @ OEVI = S 2. " = W+ By O (e, V'’

— Fiylo+ €+ n,-EVA(-€) +

(2.8)

In addition, the following Taylor expansion

i %

. , OF! OF; .
(2.9) Fyj(x+E&+n, =€) = Fy;(z,—n)+ a;;? (z, =) (" +1")+ a;{f (z,=n)(n* =€)+

is satisfied. So we have

(2.10)
. , , OF}. OF}.
h
X (V= Fy (2, V™€ — Fry(z, V™" — Dk — (2, VT
_OF}

8ykb (2. &) (" — WV + Fl (2, ) Fy(x. )V + - )&

= Fyy o, —m)V'E = By, =) Fly (0, V7 — By (=) Fy (0, )V '€?
OF; oy ,
+ et @ VI i @ ) — €V
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From (2.8) and (2.10),

(2.11)
V=V By OV — Fy V'

OF} , . ,
= S VI — S (0 ) — €V + By, €) Fly(w, OV

a k
+ Fiygla, )V = Fiy(w, ) Flu (e, V" — Fij(a,—n)Fly(w, V"'
OF} c’)FZ .
+ g o) (€ gV S () — €V 4

is satisfied.

Finally, from V =V, + dV,, % + F,ZU(JI + 1, =n)VIH=1) =0,

(2.12)
V= V= By OV = B (e VP

OFi . - A
i M (2, 6)e" vy — yfff (2,8)(n* = WMy + Fy(z, ) Fly (2, )V
+ F(x, =)V — Fi(x,—n)Fly (2, Ve — Fi(x, —n)Fly(x, Ve

OF. . OFi .
+ ax’}j (z,—n)(&" + ")V + ay};j (z, —n)(n* — € )vhed

— Fj(@+n,—n)VIH=n) + -
is satisfied. In addition

i i thj k
(2.13) Fyj(x+n,—n) = Fy(z,—n) + Tk (x,—n)n" + -

is also satisfied. Then we have
(2.14)
. ) ) OF}.
Fiw - n,~n)Vip = (B, =) + S (@ ) (VP = P, V7€ = Fla, OVt
aFG/iLC a, . c aFa}:LC a, . Cc a m C
- W(I:f)ékv n— Tw(lﬂﬁ)(ﬁk — WV + Fl(x, ) Fy (x, E)V™E

+ Bl (z, =)V — Fl(z, —n) Fly(z, ) VEE — Fl(x, —n) Foy(z, V™ '€°
aniLc ac¢c athc ac¢c j
i @) (€ Vet & ay,c( n)(n* — VI

= th (z, =) VP — th( n)Fl (z, E)Vegeny — F}ij(:b, —n)E (2, &)V

i h agcc aFfLL Etrh i
+ F;Lj(m? 777)Fac(:ri *TI)V 6 TIJ + Ok (Z‘, —77)77 Vv 17] 4o
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From (2.12) and (2.14),

(2.15)
Vi=V = F(e. Ve — Féj(ﬂm&)thj
F ky/h aF k h,j i h mel, g
— gk B EEV ~ 2, &) (" = €NV + Fyy(w, &) Fry(x, §)V™E
+ By, =V — By, =) Fry (2, )V7E'E — Fyj(w, —n) Foy (2, )V '€

OF} . . OF}
+ b (€ WA S ) — €V

+ Fyj(z, =)V — Fy (2, —n) Fl(x, VD — Fyj(x, —n) Fou(x, E)Von‘y

+ (=) Fy(w, —n)Vegny’ = VI

i
We can arrange (2.15) as follows

(2.16)

V=V = F(x, V" — F (e, OV + F(x, =)V + F(x, =)V

OF!.  OF:. )
2 (g, ) (i — €YV W( &)(n* — eV (—nf)

oyF
&E’; (z, =) Ve — 2, ) VMY + F (2, ) Fly(x, Ve — F (x, —n)Fl(x, —n) V& n°
l:, ( U)Fnhzb(Taf)me 5] - th(xv 777) mb('T’a f)vmnbgj

— Fj(z, =) Fly(x, VT — Fij(x, —n)Flhy (2, V™'

+ 8k(

OF; . OF}. .
i, —mEVRE I (w, —)
+ Fiij(‘rv _n)Fahc(Iv _W)Vafjﬁc + Fiij(xv _n)F(?c('Tv _W)Vafcnj RERRRI

Proposition 2.2 Let M be an n-dimensional differentiable manifold with a Finsler
connection FT = (Nj(z,y), Fjy(,y), Ci.(x,y)) satisfying T (x,y) = 0. For an infinites-
imal parallelogram defined by (II) and an initial vector V. = (V*), the parallel vector
V = (V1) is obtained from a linear parallel displacement along c. Then V and V have the
relation (2.16).

Now the following equation
Fj(w, =n) Fry(w, V7S + Fyj(w, —n) Fpy (w0, V™€
(2.17) + By, =) Foy (2, )V E Y + Fj(, =) Fyy (2, )V 1)
= Fyj(x, =) Fop (2, V™ (€ + ") + 1)

is true. Further we allow the following equations

OF! )
(218) axhj ( )Ek‘g] 7271]( n)F;Z/i('IJ _n)gjfkv

OF!. ) . .
(2.19) Y (2, —n)ytn? = L (x, —n) F(z, —n)'n".

oxk
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(T &+
n, —&)VH(=&7) = 0 is satisfied on the way from r to s.

(220) —3 +((9 -

. . . B2vi
We can ignore the second order differential, namely, d:ﬁ = 0, then we have

i

OFy; f . i
(2.21) Dk Ha &+, =& — Foy(o + &+, = F(z + &+, —€)E" =0.

From this equation and (2.9), if we ignore the terms of 3rd and more order with respect
to £ and 7 in it, we have (2.18). Further (2.19) is obtained by the same calculation from
i+ Fiy(e =0V} (=n7) = 0 by using (2.13).

Now from (2.18) and (2.19) the following equations is satisfied.
OFy; .
_ iy
ok (& TMEE + (x, =" | |
(2.22) +F (33, n)Fhk(ﬂf - ) b b g, —n) Fi (e, —n)€y?
= F(z, = Fi(e, —n)g’e" + F(x, )Ffl’i( —mn'n*
+ (=) Fpi(z, —=m)en" + B (e, —n) Fyy (x, —m)ghp

Namely, we have

OF! 8F ‘
Ok " (z, —n)EFel + (/,—77)77’“77’

+ F,‘nj( ' — )Fiﬁi(ﬂi, —)&n" + i (x, —n) Fyi(z, =)y’
= Fyy(a, =) Fyi(z, =n)(€ + 7)€" + ).
From (2.17),(2.23) and (2.16), we have

(2.23)

(2.24)
Vi=Vi— F(z, V" — Fi(x. V") + Fl(x, =)V + Fi(z, —q)V"y
OF} . OF!. .
e 2 (2, =) (" — € )V”éj '}j (2,6 (0" — WP (=r)
OF}, ,
+ Ak (‘I. - ) kvhfj a hk (SE é)gjvhnk + FZ k(I é)Fh] (‘T £>Vh§] (.TJ, —W)Ff%(ﬁ —n)vhfjnk

— F(z,—n )Fiﬁ(x,f)‘/h(ék + 7N 4+ 17) + (@, —n) Fyp(a, =)V + /) (" + %) + - -
= VZ - Fi](x’g)vhéﬂ - Fi](xf)vhn] + F}ij('rv _W)Vhfj + F}ij(xa —W)Vhﬂj
OF} OF}

g = ¢ Ve + + G O = VA=)
OFy; 4
+ Ak (':C - ) kvhfj a hk (.I' g)fjvhnk + FZ k(‘r E)th (l’ E)Vhfj (ZC, _n)FfZLﬁ(ma —n)vhfjﬂk

- Fﬁu( =) (Fpp(z,€) — Fhk(l"a _W))Vh(ﬁk +n )(8 +n’ )JF
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OF®
Further, if we use F(x, &) = Ef(z, —n) + o PR (2, =) (€ + ") +- - -, then the last term

of (2.24) disappears. Then we have

Proposition 2.3 Let M be an n-dimensional differentiable manifold with o Finsler
connection FT = (Nj(x,y), Fj(,y), Cyi(x,y)) satisfying T}, (x,y) = 0. For an infinites-
imal parallelogram defined by (IT) and an initial vector V. = (V) the parallel vector
V = (V) is obtained from a linear parallel displacement along c. Then V and V have the

following relation

(2.25)

_ . ) ) ) ) OF!. . OF!. .

V= V= [l =) = By, )+ )+ (5 e -n) & 5 2 )0~ &)
thJ aFiik

(G =) = S (2,) = Fiy (o, —n) Fib (=) + Flu, Py, ) V" +

Now, we put quantities A and B as follows

o P ) o A
A= (B, &) = Fiy(e,m))(& + ") + (53 (@, O + 3 (@ m)eh) (" = £F)
(2.26) - o y Y
+( a;,”f( &) — a;}’“ (1) = Fl (a0, &) Fy(, €) + Fy () Eif (e, m) )/ €F
(2.27)
| | ) .aF .
= (Fpj(z,—n) = Fy(z, ) +n') + ( o (z, —n)&" + (x E)(=1)) (" — &%)
+ 8};’5 (z,—n) — aaij (z,8) = Fi(x, =) Fyp(z, —n) + Flp(x, §)Fyi(x, €))&in*

We investigate a tensorial property of A and B in the next section.

3 Tensorial property of A and B

Let {U, (z%,y")} be a coordinate neighborhood on TM and {U, (z',7')} another one.
We assume that
T =7(z) (a coordinate transformation on M),
e
.z, ¢)} > @.€), ('), (@ +§777)7 ( +17')
{U.(@.7)} > (@), @.7) @+&.7), @ +7,

Then the following equations

) ('EZ+£Z+”ZJ_§Z)J (xz+7]1:_771)7 (17i7_7]i):
N, (T + &+, =8, (@ +7,-7), (&, 7).

_ 0z Oz Ox* 8:2“ %t
(31) Fbc(xa y) - F‘]k(T y) oxt 8xb oxe %m7
anC( ) = 8F;k (@, )&E 0z’ Ox* O

Bl Y oy dat 9Tt 9z° 9T

(3.2)
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are satisfied, where z = (z), y = (v*), z = (z'), § = (§'). Therefore from (3.1)

e ; ; 97 Ox? Ox*
63) Fi(s.8) = File.) = (F(r.€) — Fi(am) 2 9200
is satisfied. This means that the first part (Fj;(z,§) — Fj;(x,1))(§7 +77) of Ais a

tensor field. Further from (3.2) we can see the fact the second part (8;;':?' (z,8)n +

%Zij (z,m)&7)(n* — &F) of A is also a tensor field.

On the other hand, in Finsler geometry, the third part of A

OFy; OF)),
ook &) =

is not a tensor field. We, however, can calculate as follows

(3.5)

OF;; OF; . , , ,

( ax',? (z,8) — %Zk (x,n) — Fi (2, ) Fyn(x, &) + Fly(a,n) F(x,n))n'€*
F, OF;; OF OF;

= (Gt (08 + N, &) 2 0,€) = S H o) = N ) 5 2 )

— Fl (2, ) Fyi(2.€) + Fly(x, ) (1) €F

SF}, SR -

= (o (06 + (€ Fon(w,€) = D, €) 57 (0, ) = S ()

i

- (ngTZI’LJ(‘L ’f/) - Di(‘L T/)) ay};k ('L T]) - Frlnj('l7 g)FIZ;("Lv §) + F'rlnk(‘l’v ’))FfZL(‘Lv ’)))T/jgk

SF, SFi _ _
= (G (@.8) = S () = Fly(a ) Fyi(a.€) + Fly(a, ) iy ()

i

OF". i )
DL &) S (1, ) + D, ) 2L ()i

oyt oyt
OF} ; OF! i
+ (Fop(,€) ayﬁ (2,6) = Fp;(x,n) ay};k(l"ﬂ?))& PEr.

In our calculations, we can ignore 3rd order terms with respect to &, 7. Then the quantity

OF. SE! _ _
(3 6) (SI};] (I7€) - 5;? (I,T]) - F&J(Iaf)Fﬂ(I»@ + F&k(I,n)F,?}(I,U)
‘ OF}. OF:
= Dile, )5 (@) + Dy, m) 5 ()
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is a tenor field in Finsler geometry. So we have
(3.7)
. , . , , , OF} . - OF. .
V=V =[(Fyy(x,8) — Fyj(,n) (& + ) +( ay’;” (z, &)1 + ay};” (z, &) (" — &)
OF) SF!

i

OFy,; OF}, ;
= Di,) G 0. 6) + Difa ) G )V ¢
By the similar calculation for B, we have
(3.8)

i %

i i i i j j thj j 8F k k
Vi-V'= [(th(l’, _77) - Fh](l',f))(gj +77J) + ( By’“ (37’—77)3 + a A (x 5)( ))(77 —¢ )

6F}ZLJ ilzk i m
O ) = e 1) ) iy ) 1 B P 0.6)

OF!. OF! .
— Di(x,—n) 83;] (z,—n) + Di(z,¢) ayf;’“ (z, ))&V +

Therefore we have

Proposition 3.1 Let M be an n-dimensional differentiable manifold with o Finsler
connection FT' = (N;(x7y)7F‘]iik(x7y)7C’;k(a?,y)) satisfying T;k(m,y) = 0. First, for an
infinitesimal parallelogram defined by (I) and an initial vector V = (V*), we have vectors

= (V),V, = (V) and the difference V, —V, satisfies (3.7). Neat, for an infinitesimal
parallelogram defined by (IT) and an initial vector V = (V) the parallel vector V = (V?)
is obtained and the differences V —V satisfies (3.8).

Finally, when the deflection tensor field D} = y™F,; — N; vanishes, we have the
following theorem

Theorem 3.1 Let M be an n-dimensional differentiable manifold with a Finsler con-
nection FT' = (Ni(x,y), Fj.(z,y), Cyi(x,y)) satisfying T} (v,y) = 0, Di(z,y) = 0. First,
for an infinitesimal parallelogram defined by (I) and an initial vector V= (V*), we have
vectors V, = (V1),V, = (V) and the difference V, — V, satisfies (3.9). Neat, for an in-
finitesimal parallelogram defined by (IT) and an initial vector V= (V'), the parallel vector
V = (V%) is obtained and the differences V — V satisfies (3.10).

(3.9)
. _ . , . . OF}. . OF}, .
V= V= (B (. 8) = Fyyem)(& + ') + (G @ 0’ + 52 wm)e) ' =€)
OF) . SF! :
(M 6y S ) By )R, €) + e )y )PV +
(3.10)

o | R, aF .
Vi-Vi= [(Féj(xv—n)—Fij(xvf))(fj+n3)+(ay (z, —n)&’ + (93 (=) (n* — &)

OF} SEi
+<5£ (, =) = (€)= Fopy (=) Fyp(w, =) + Froy(, f)Fh](l NERFVE 4
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Remark 3.1 Under the same conditions in Theorem 3.1, if we investigate the differ-
ence V=V obtained from the traditional way of a parallel displacement defined by (1.6),
then we have

(3.11) V=V = Riy(a, V)ghy,

IN! ON:
s (1) =5 (@, y).

where R;'-k (x,y) is one of torsion tensor fields, namely, R;k(x, y) =
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