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Abstract

The author states the necessary and sufficient condition that linear parallel dis-
placements are symmetric for any curve and path, respectively. Further the author
gives the determinant of linear transformations derived from linear parallel displace-
ments and states a condition for the linear transformation to be an orthogonal one.
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Introduction

The author stated the notion of parallel displacements of vector fields along a curve on
the 43-rd Symposium on Finsler geometry at Utsunomiya, 2008. The definition is linear
with respect to a vector field. So the author redefines it as “linear” parallel displacement
followed in [2] (In this book, however, linear parallel displacements are defined by an
non-linear connection V). On the other hand, the traditional ways of the definition is not
linear with respect to a vector field([1]). Further in the early stages of Finsler geometry,
many authors gave its definitions([3]) and in the book [4] they were collected. In all cases,
however, the studies that the author states in this paper were not investigated.

In the first half of section 1, the same contents to [7] and [8] with a little difference are
stated and in the second half the necessary and sufficient condition that linear parallel
displacements are symmetric for any path is stated. In section 2, the determinant of &
derived from linear parallel displacements is given and cases that @ is Identity transfor-
mation and an orthogonal one are stated.

The terminology and notations are referred to the books [5] and [6]. The author
is given very useful suggestions by Prof.T.Aikou and Prof.M.Hashiguchi frequently, and
greatly appreciates their kindness.

1 The definition of a linear parallel displacement along
a curve

The contents of this section is involved [7]. Firstly, we put terminology and no-
tations used in this paper. Let M be an n-dimensional differentiable manifold and
FT' = (Ni(z,y), F}.(2,y),Cl.(z,y)) Finsler connection(or the coefficients of a Finsler
connection FT') and all of objects appeared in this paper (curve, path, vector field, etc)
are differentiable. In additions, indexes i,j,k,r,m,l;--- run on 1 to n.
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Now, for a vector field along a curve ¢, we give a following definition of linear parallel
displacements along the curve.

Definition 1.1 For a curve c = (¢i(t)) (a < t < b) and a vector field v = (vi(t)) along
¢, if the equation
dv? dc”

— J SN o
(1.1) pr +v'F (c,e)c" =0 (¢ g

)

is satisfied, then v is called a parallel vector field along c, and we call the linear map
I, : v(a) — wv(b) a linear parallel displacement along c.

Remark 1.1 We can see that the differential equation (1.1) is linear with respect to
a vector field v, so a linear parallel displacement I1. is reqular, namely, one to one and
on to, because of the uniqueness of the solution of the differential equation (1.1).

Let set the state as a curve ¢ = (c(t)) (e < t < b) passes through two points p =
c(a), g = c(b) on M, and we assume that a vector field v = (v'(t)) is parallel along ¢ and
A= (A% =v(a), B=(B")=wv(b). Then, in general, we can have another curve ¢! and
vector field v~! as follows

(1.2) cHr1) = (c7Y(7)), where ¢ (1) = (=7 +a +b),

(1.3) v7(7) = (v71(7)), where v (1) = v(—7 4+ a +b)

andt=—-7+a+b a<7<h
Then ¢ 1(a) = c(b) = q, ¢ }(b) = c(a) = p and v~1(a) = v(b) = B, v~1(b) = v(a) = A.

In general, the vector field v~! is not parallel along the curve ¢=*. Because the satis-

3 i & o . % d —14 . duv?
fying equation is, from ¢71" = —¢", 24— = —%- and (1.1),
dv " 15 i (—1 1y -1 e delr
1.4 Fu VR (g e =0 (6 = .
(1.4 (e, ) =2

So we consider a parallel vector field v = (u*(7)) along ¢! with the initial value

u(a) = C and the end value u(b) = A. By the definition, u(7) satisfies the equation
du’
dr

(1.5) +wF (¢, &) =0.

In addition, the vector field u=1(¢) along the curve c satisfies
du™t dc”

s wUF (e,—¢)d =0 (&=—

Then we investigate a transformation

(1.6)

Definition 1.2 ®..(t) : v(t) — u'(t) on TyyM Vi € [a,b]
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at every point c¢(t) on the curve ¢, where the initial value ®..(a) = Identity(In the Rie-
mannian case, ®..(t) is the identity transformation, equivalently.).

Since the linearity of the equations (1.5) with respect to u, ®..(t) is a linear transfor-
mation. Hence we have a (1, 1)-tensor fields ®}(t) with the parameter t and ®(t) satisfies
the following equation

(1.7) ut(t) = DL () (t).
Since u~'%(t) satisfies the equation (1.6) and (1.7),

dds - dv? o
J,J el m,.J i AT
(1.8) o + @’ pr + T (e, —¢)¢ =0

is satisfied.
On the other hand v’ satisfies the equation (1.1). From (1.1) and (1.8), we have

dé; 1 m s Nve m LA i
(1.9) T @, Fir(c,e)é" + @7 Fy (¢, —¢)¢" | v = 0.
Since the arbitrariness of the vector field v, we have
d(I); ) m e\ o m S\
(1.10) - @, FiM(c,c)¢" 4+ T Fy (¢, —¢)¢" = 0.

@ o
So we have

Proposition 1.1 For the transformation ®.:(t) defined by Definition 1.2, we put the
components ®%(t), then ®%(t) satisfies (1.10).

‘Now, if, on the curve ¢, v = u™! is satisfied, then ®}(t) = J; are satisfied. Therefore
ot

—i+ = 0 are satisfied. Then we have, from (1.10),

(1.11) F; (c,6)¢ + Fj.(c,—¢)(—¢") = 0.
Further we assume that the Finsler torsion tensor field 7' vanishes, namely, TjiT(x, ] =
F} (z,y) — F};(x,y) = 0. Then we have, from (1.11)
(1.12) Fyi(c,¢) + Fg;(c,—¢) = 0.

Inversely, we assume that Fg;(c,¢) + Fg;(c, —¢) = 0 is satisfied. Then we can prove
that the inverse vector u~! is parallel along the curve c as follows

du—li o N du—li
+uYEF} (¢, —¢)¢ =

+u Y F (e, —¢)¢

;r dt
= B R o))
- - e
W R o
N dzil;h +u Yl (e, &)
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The right hand side is equivalent to the left hand side of (1.1) of the parallel vector field
v along c. From v(a) = u™'(a) = A, we have

(1.14) v =vonec
Therefore
(1.15) wu=v"'onc!

is satisfied. From (1.15), we can see that v~!

along ¢~'. So we put a definition as follows

is parallel along ¢! because u is parallel

Definition 1.3 Let v be a parallel vector field along a curve c¢. If v=! is also parallel

along the curve ¢!, then the linear parallel displacement I1. is called symmetric.
Then we have

Proposition 1.2 Let ¢ be a differentiable curve on M and the Finsler torsion tensor
field T vanishes on c. The linear parallel displacement 11, is symmetric if and only if the
equation (1.12) is satisfied.

And

Theorem 1.1 Let M be an n-dimensional differentiable manifold with a Finsler con-
nection FT' = (Ni(z,y), Fi(z,y), Ci.(x,y)) satisfying T},(z,y) = 0. For any differ-
entiable curve ¢ on M, the linear parallel displacement 11, is symmetric if and only if
Fii(z,y) + Fy;(x, —y) = 0 is satisfied on M.

Remark 1.2 The quantity Fg;(z,y) + Fg;(x, —y) is a Finsler tensor field.
Hereafter, we put Hi(z,y) = Fy;(z,y) + F,;(z, —y).

Next, we investigate the case of linear parallel displacements on paths. A path c(t) is

a curve satisfying the following differential equation
dét ,
1.16 — 4+ Ni(c,¢)¢" = 0.

(1.16) N,

In here, we assume Ni(z,y) = N¢(z, —y). This means that if a curve ¢ is a path, then
the inverse curve ¢! is also one.

In additions, we prepare notations for calculations.
If a quantity A have (z,y), then we put TA. On the other hand, if a quantity A have
(,—y), then we put ~A. And the contractions of y and —y are as follows, for examples,

Ay = Al y)y, A = Al —y)(—y) = — Az, )y
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d tH? ; ; ; . , ,
= £('Fi;+ F;) on apath c(t), where *Hi = “H!and *Nj = "N}
are satisfied.

d. d o OTFLdk L4 de
Fz _ +Fz Ty — T3 v =+ T 77
gl o) = g Fle98) = 53+ 8 Foat© i dt
§ FE (‘9+FZ ot o i dék
(e ) (e m)
(1.17) _4F Tz’c’“ 4+ N +FT1] &+ ”c’" + F ) (- V)
- (vak 0 3 1 kj 0
5 + 7 8 +Fz 8 +Fz
_ ) kv 1 7 r 7 7‘ i k
- 6 kJC +N0 6 l] =R ay ¢ _ +Fk] +N
§ tEE ,
_ Ty k .7 +r k
=5k et — ij +N0.
By the same manner, we have
d —1 6 —Ff'f koer — =
(1.18) =( Fy) =~ Mkfckc + F; NS
Therefore we have
dH: T o 6‘Ff-ur o
(1.19) 7 L(c,é) = 5zk]ck — TF; N§ - Mkjckc + Fy; Ng.

On the other hand, in general, the following equation
(1.20)
+

. 5 tH: : 4
Hig(on) = (S + H F— W) o

) ) ) )
(5 —(Fy — FL) + (CFLy — Fy') e — (P — Fiy') +F}k> y*
6 F § L B o -
6Ik3yr k +Fz +Nr = y yk + Fz r +F0l F(gj _ FOl +Féj

is satisfied. Here we put ‘Ki(z,y) = *Fy Fj; — Fy "Ff;. Then we have

+pi —F

| | ; | 5 F. .
(1.21) Hjjo(e,y) - "Kj(e,y) = — —— Tk — EL NG — 5,c]zfy’“+ F NG

If a path c(t) is given, then, from (1.19) and (1.21),

(1.22) +H}lo(c, ¢) — +K;(c, é) =

(c ¢)

is satisfied on the path c(t).
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Here, we assume *Hi(c,¢) = *Fy,(c,¢) + Fg;(c,—¢) = 0 on any path c(t) namely,

the linear parallel displacement II. is symmetric on c(t). Obv1ously, ( c,¢) =0 is
satisfied. From (1.22),

J

(1.23) Hiole,é) — *Ki(c,¢) =0
holds good. In addition, from “Fg;(c, —¢) = — *Fg;(c, ¢),
(1.24) K3 (c,¢) =0

is satisfied. From (1.23) and (1.24), we have

(1.25) "Hjo(c, &) = 0.

Now, we have a solution of the path equation (1.16) at arbitrary points (¢ = z,¢ = y).
So (1.24) and (1.25) are satisfied at any point (z,y), namely, we have

(1.26) +H;|O(x,y) =0 and +K;(x,y) =0.

Inversely, if we assume (1.26), then on any path c(t), +H]|O(c, ¢)=0and *Ki(c,¢) =0

are satisfied. So, from (1.22), we have L ;f;(c, ¢) = 0. Therefore *Hj(c,é) = *Fg;(c,¢) +
“Fj;(c, —¢) = A} (constant) holds good on the path c(t). We notice the quantity *H; is a
Finsler tensor ﬁeld By any coordinate transformation z — =z, )\Z = zgﬂ g””a is satlsﬁod
However, )\’ have to be constant with respect to the parameter ¢t. Therefore /\1 = 0 ought

to be satlsﬁed So we have

(1.27) *Hi{c,¢) = "Fy;(c,é) + Fg(e,—6) =0.

Namely, on the path ¢(t), the linear parallel displacement II, is symmetric.
Further, we have, by the same calculations,

(1.28) - THjy) = Hiw ),

(1.29) b C;f;’ (e:-8) = . ZIJZ' () (on any path o(0),

(1.30) Kj(z, —y) = — Kj(z,y),

(1.31) Hip(z,—y) — Kj(z,—y) = — Hiolz,y) + K;(z,y),
(1.32) Hjole,—¢) — Kj(c,—¢) = - _H;(c, —¢) (on any path c(t)).

dt

So “ "Hj(z,~y) = 0 and "Kj(z,—y) = 0" is equivalent to “Hj(c, —¢)(= *Hi(c,¢)) =0
on any path c(¢). Consequently, we have

Theorem 1.2 Let M be an n-dimensional differentiable manifold with a Finsler con-
nection FT' = (Ni(z,y), F}(z,y), Ci.(z,y)) satisfying T}.(z,y) = 0 and Nj(z,y) =
N¢(x, —y). For any path c(t) on M, the linear parallel displacement I1. is symmetric on

c(t) if and only if H: bO(z y) =0 and K}(z,y) = 0 are satisfied.
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Remark 1.3 The quantity Hj(z,y) is a Finsler tensor field, however, K}(z,y) is not
one. But the vanishing property K:(z,y) = 0 is independent of the choice of coordinate

neighborhoods as follows: B
For coordinate neighborhoods {U, (z,y)}, {U, (z, g)}, where UNU # ¢,

o' 9z9 (o) (89‘5” Fg Bt % )_k

72 l el - -
(133)  Kj(@,9) = K(@9) 5252 — Hn®9) 5. gmamr + 95 ont 0000w

holds good. So, on U, if Hj,(x,y) = 0 and Kj(z,y) = 0 are satisfied, then Hi(c,¢) =0 is
satisfied on any path c(t). Therefore, on U, I_(;(:Tt,gj) = 0 1s satisfied.

2 The determinant of .,

For a curve ¢(t) (a <t < b), the linear parallel displacement II. is regular as that is
stated in the previous section, namely, the determinant |II.| # 0 is satisfied. By the way,
the linear transformation @, . is regarded as the inverse of a composite of II. and II.-1 as
follows

(2.1) Pos = (I, 0 Mp1)7,

Therefore @, is regular. We rewrite the equation (1.10) under T}, =0
d®}
dt
where ) = &3(t), *Fg} = F3(c(t), &(t))& (1), Fom = Frm(clt), —6(0)) (=€ (2))-

(2.2)

= ! g+ T Fns

We calculate the determinant det(®%) of the matrix (®:). For the calculation, we have
the following preliminaries.

(2.3) fR)=det(@) =12|=]: : : |, ¥ =—,
(I)? @g (I)z
oL ’ 7
(2.4) Xe=| |, X =] (k=1,---,n).
o o

Then we can rewrite the various quantities as follows

(2.5) F(8) =X X+ X,
(2.6) oY = &, *Fg; + O Fy,
(2.7) X = (®}) = (%5, "Fgp) + (BF Fin)-

In general, the differential of the determinant f(¢) with respect to ¢ is written by

(2.8) F@) =X, Xo o Xl + X0 Xy Xao oo K|+ + | X1 -+~ Xno1 X,
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We denote the k-th term of (2.8) by dfy, and calculate it.

(@5, FGR) + (B Fom) -+ Xl

dfe = X1 - Xi' - X,
(2.9) :[Xy‘.((p;;’)...xnyzlxl..
=|X; o (R, TF) - X + X -

(B Fopn) - Xal-

Further, from

(2.10)

(@5 “F5)

(P “Fop +

B 4+ ok B 4o B Y,
D7 Fop + o+ O TFG A+ + D5 TFGL

O AL A+ -+ OF TFE 4+ DT TR

c @LFE 4+ B YR (K - fixed)

P2 4T, @2 *F, ®2 HF
_ 1:0k T k:Ok T :Ok
o7 *Fy o *Fy, o} *FG,

= Y (@1) +

= X+

et TFy (BF) + o+ R (D5)
+ TFE X+ o+ TFRX,,

we can see the first term of the right hand side of (2.9) by (2.10) as follows

(2.11)
| X«
— Xy .-
=Ky e

= LK s
= FEIX) -

And, from

(2.12)

(@, ) Xl
Fo X+ + Fn X+
+FolkX1"'Xn|+"'+|X1
XX+ + +Féck|)(1
Xi o Xp| = FEL) (K fixed).

(®F Fom) = (P4 Fou +

A+ TR X X
+F0k]ng"'an+"'+lX1
Xy Xnl+- -+ +F(§lk|X1

ot ®F F 4+ @ FS,) (K fixed)

Or Fo -+ OF FL A+ +OF Fy,

B O FE 4+ OF FL A+ + O} FE
@;—F(ﬁ+---+<1>’,g;Fglk+-~-+<1>’,;—Fgln
BEN O (HEY (nH

_ k.01 4ot k.l)k NN k.()n
2} 2} Ty, ap

=, ( Fg) +

e O (F) e+ O (F)
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we can see the second term of the right hand side of (2.9) by (2.12) as follows

(2.13)

X1 e (OF Fom) - Xl

= X1 - @ (Fo) + o+ BE(F) o+ OF () - Xl

=X @ (F) Xl Xy (R Xal b X 9 (F) o Xl
=‘1>;1c|X1 (‘Fél)---an+-~-+<I>£|X1 (_Fék)--'Xn}—F-”—HI)Zle (_Fén)"'an
(k : fixed).

Then we have the form of the k-th term df, as follows
(2.14) dfy = “Fi f(t) + i@ﬂXl oo Xy (F) Xpgro- Xa| (K fixed).
r=1
Therefore the differential f'(t) = >p_, dfy, of the determinant f(t) is written by
215) 0= B+ S EIX - Xer () Ken Kol
k=1 k=1 r=1

Next, we investigate the second term of (2.15).

(2.16)

YD BN e Xa (F) Xegaoo- Xl

k=1 r=1
=0 ( For) Xo oo Xul 4+ QY (Fp) X voo Xl -0+ 07 (FGn) Xo ooe X
+ 00X (Fg) o Xal+o+ 03X (FG) o Xl oo+ 951X (Fg,) o X

+ LX) o Xy (FG) [+ 40X o Xy (FE) [+ ONX - X (TFE) )

To calculate the above equation we consider the following n-systems of linear equations.

o1 ® ... Bl z! B,
(2.17) RORCHRCH B I L (=185 ,m.
ap oy - ar) \an) \ Hy
This n-systems has a solution (z',--- ,z") because of the regularity of ®. Then
(2.18) Pig! + Bz 4. + Bz = Fi (i=1,2,---,n)
are satisfied. Therefore
(2.19) Qi f(t) + BLa®f(t) + - + DL f(t) = FLf(t) (i=1,2,---,n)
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are satisfied.
Next, if we multiply the both side of (2.17) by the cofactor matrix of (®%) then we have

f@&)y - o0 x; |(_F3k) ;)(2 s Xy
(2.20) R I (o) - Xl |
0 f(t) " |X1 svw X (—ng)|
namely
(2.21) f(t) =1X1 - X (Fgg) Xjor Xal (1=1,2,-+,n)
are satisfied. Therefore we have, from (2.19) and (2.21),
(2.22)

O (Fg) Xo o0 Xal + QX0 (FG) 0 Xal+o H X0 0 Xnoy () | = Fof ()
(Zak: 172a"' ,'I’L}
From (2.16) and (2.22), we have

ZZ‘I’ZIXl o Xier () Xegro o X

k=1 r=1

(2.23) = Fauf@®)+ -+ Faf@)+ -+ Fgf(t)
=(Fp 4+ Fh++ F)=) TFaflt)
k=1

Therefore, we have, from (2.15) and (2.23),

(2:24) f(t) = ("R + Fg)f(t) = trace(H;(1) £(2),
k=1
where H}(t) = YFg;(t) + Fg;(t).
Let’s solve the above differential equation (2.24). Then we have f(t) = Cexp( fat traceH (o )do)
(C': constant). At the initial value t = a, ® = Identity. So C =1 is true. Therefore we
have

(2.25) det () = exp(/t traceH(o)do) (a <t <b).

From (2.25), we notice that det ®(¢) is positive and ® preserves the orientation of tangent
spaces on c(t). Further if the trace of H vanishes, then @ is an orthogonal transformation.
In addition, according to the previous section, if H = 0 is satisfied, then obviously ® =
Identity is true . Then we have

Theorem 2.1 For a curve c(t), the determinant of ® defined by Definition 1.2 is given
by (2.25). And @ is a linear transformation which preserves the orientation of tangent
spaces on c(t) and satisfies (1) and (2) as follows:

(1) of H=0, then ® = Identity on c(t),
(2) if traceH = 0, then all ® are orthogonal transformations on c(t)
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Remark 2.1 Spaces which satisfy (1) are Riemannian spaces and Berwald ones. But

we don’t know examples satisfying (2), yet.
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