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Abstract
The author investigates the first and the second variations of the arc length of

curves under the standpoint of linear parallel displacements. Last year the author
studied linear parallel displacements along an infinitesimal parallelogram and ob-
tained three quantities on H([9],[10]). In this paper, they appear in the second
variation.
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Introduction
The author have been studying the linear parallel displacement in Finsler geometry

from 2008. In [4] the author called it “parallel displacement”. But in [6] and [7] the
author renamed it “linear parallel displacement” because Prof.Z.Shen had already given
the nearly same definition satisfying the linearity by the coefficients N i

j in his book [1] .
He called such parallel displacements “linear parallel”.

First, we put terminology and notations used in this paper(cf.[2] and [3]). Let M be
an n-dimensional differentiable manifold and x = (xi) a local coordinate of M . TM is the
tangent bundle of M and (x, y) = (xi, yi) is a local coordinate of TM . N = (N i

j(x, y))
is an non-linear connection of TM and its coefficients of N on a local coordinate (x, y).
F (x, y) is a Finsler structure (or Finsler metric, Finsler fundamental function) on M .
Further, FΓ = (N i

j(x, y), F
i
jr(x, y), C

i
jr(x, y)) is Finsler connection and its coefficients

of FΓ satisfying T i
rj := F i

rj − F r
jr = 0, Di

j := yrF i
rj − N i

j = 0 and gij|k(x, y) = 0(h-
metrical). And N i

j(x, y), F
i
jk(x, y), C

i
rj(x, y) are positively homogeneous of degree 1, 0

and –1, respectively. Therefore N i
j and F i

jr come to Cartan’s ones. Last, we denote the
collection of horizontal vectors at every point on TM byH. This is the subbundle of TTM
and its dimension is 3n. So we denote a local coordinate of H by (x, y, z). And it is called
“horizontal subbundle of TTM”. All of objects appeared in this paper (curves, vector
fields, etc) are differentiable. In additions, indexes a, b, c, · · · , h, i, j, k, l,m, · · · , α, β, · · · ,
run on from 1 to n = dimM .

Now, for a vector field on a curve c with a parameter t, we give a following definition
of linear parallel displacements along c([4],[5],[6],[7]).

Definition 0.1 For a curve c = (ci(t)) (a ≤ t ≤ b) on M and a vector field v = (vi(t))
along c, if the equation

(0.1)
dvi

dt
+ vjF i

jr(c, ċ)ċ
r = 0 (ċr =

dcr

dt
)
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is satisfied, then v is called a parallel vector field along c, and we call the linear map
Πc : v(a) −→ v(b) a linear parallel displacement along c.

The difference from the traditional notion of parallel displacement in Finsler geometry
are three points. One of them is that the inverse vector field v−1(τ)(τ = −t + α) is not
always parallel along the inverse curve c−1(τ), even if v(t) is parallel vector field along a
curve c(t)(cf.[4], [6]).

The others of them are that we can consider, for vector fields u(t), v(t) along c(t), an
inner product gij(c, ċ)u

i(t)vj(t) along the curve c(t) and the inner product is not always
preserved, even if u, v are parallel vector fields along a curve c.

Then we have(cf.[5])

Proposition 0.1 Let (M,F (x, y)) be a Finsler space with a Finsler connection (N i
j , F

i
jr, C

i
jr)

satisfying h-metrical gij|r = 0. For any parallel vector fields v = (vi(t)), u = (ui(t)) along
a curve c = (ci(t)), if c is a path or a geodesic, then the inner product gij(c, ċ)v

iuj along
c is preserved.

Theorem 0.1 Let (M,F (x, y)) be a Finsler space with a Finsler connection. We
assume that the Finsler connection is h-metrical and the metric gij is positive definite.
Any smooth curve preserves the inner products of parallel vector fields along it, if and
only if,

∂gij
∂yr

= 0 is satisfied, namely, (M, gij) is a Riemannian space.

1 Linear parallel displacements along an infinitesimal

parallelogram

Next we introduce conclusions obtained by investigating linear parallel displacements
along an infinitesimal parallelogram([9],[10]).

We studied two cases. One is the case that makes an initial vector be two parallel vector
fields along two routes(Case I), and the other is the case making a parallel vector field
along one loop(Case II). Hereafter, we assume all points and curves are in one coordinate
neighborhood.

First, we define three quantities W,L,K on H as follows:

W i
hj(x, y, z) := F i

hj(x, y)− F i
hj(x, z),(1.1)

Li
hj(x, y, z) :=

∂F i
hm

∂yj
(x, y)zm +

∂F i
hm

∂zj
(x, z)ym,(1.2)

Ki
hjk(x, y, z) :=

δF i
hj

δxk
(x, y)− δF i

hk

δxj
(x, z)− F i

mj(x, y)F
m
hk(x, y) + F i

mk(x, z)F
m
hj(x, z).(1.3)

Case I. Let p, q, r, s be four points on M and let (xi), (xi + ξi), (xi + ξi + ηi), (xi + ηi)
be their coordinates, respectively. Further c1, c2, c3, and c4 are following curves with a
parameter t (0 ≤ t ≤ 1):

(I)


c1(t) : xi(t) = xi + tξi (p to q),
c2(t) : xi(t) = xi + ξi + tηi (q to r),
c3(t) : xi(t) = xi + tηi (p to s),
c4(t) : xi(t) = xi + ηi + tξi (s to r).
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We take two routes c = c1 + c2(p → q → r) and c̄ = c3 + c4(p → s → r), and consider
linear parallel displacements along c and c̄, respectively. Let V = (V i) be an initial vector
at p and let Vq, Vr be the values at q and r by the parallel vector field along c, respectively.
Further, let V̄s, V̄r the value at s and r by the parallel vector field along c̄, respectively.

Our standpoint is to investigate the difference V̄r − Vr. The result is as follows:

V̄ i
r − V i

r = [W i
hj(x, ξ, η)(ξ

j + ηj) + Li
hj(x, ξ, η)(η

k − ξk) +Ki
hjk(x, ξ, η)η

jξk]V h + · · · .
(1.4)

Case II. Let four points p, q, r, s be the same in Case I. However, curves c3, c4 are
different from (I) as follows

(II)


c1(t) : xi(t) = xi + tξi (p to q),
c2(t) : xi(t) = xi + ξi + tηi (q to r),
c3(t) : xi(t) = xi + ξi + ηi − tξi (r to s),
c4(t) : xi(t) = xi + η − tηi (s to p),

where 0 ≤ t ≤ 1.
We take a loop c = c1 + c2 + c3 + c4(p → q → r → s → p) and consider a linear

parallel displacement along c. Let V = (V i) be an initial vector at p and let Vq, Vr, Vs be
the values of the parallel vector field along c at q, r, s, respectively. Further, let V̄ be the
value at the end point p.

Our standpoint is to investigate the difference V̄ − V . The result is as follows:

V̄ i − V i

= [W i
hj(x,−η, ξ)(ξj + ηj) + Li

hj(x,−η, ξ)(ηj − ξj) +Ki
hjk(x,−η, ξ)ξjηk]V h + · · · .

(1.5)

Remark 1.1 In (1.4) and (1.5), (· · · ) expresses 3rd and more order terms with respect
to ξ, η.

After all, we have the following theorem([9],[10]).

Theorem 1.1 Let M be an n-dimensional differentiable manifold with a Finsler con-
nection FΓ = (N i

j(x, y), F
i
jk(x, y), C

i
jk(x, y)) satisfying T i

jk(x, y) = 0, Di
j(x, y) = 0. First,

for an infinitesimal parallelogram defined by (I) and an initial vector V = (V i), we have
the difference V̄r − Vr satisfying (1.4). Next, for an infinitesimal parallelogram defined
by (II) and an initial vector V = (V i), the parallel vector V̄ = (V̄ i) is obtained and the
differences V̄ − V satisfies (1.5).

After that the author studied in detail properties of W,L,K in [10] and obtained the
following propositions and theorem.

Proposition 1.1 (Proposition 3.1 in [10]) Let FΓ = (N i
j(x, y), f

i
hj(x, y), C

i
hj(x, y)) be

a Finsler connection satisfying T i
rj = 0 and Di

j = 0. Then W = 0 on H is equivalent to
L = 0 on H.
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Proof
From W i

hj(x, y, z) = 0, F i
hj(x, y) = F i

hj(x, z) is satisfied. This implies

(1.6)
∂F i

hj

∂yk
(x, y) =

∂F i
hj

∂zk
(x, z) = 0.

Therefore Li
hj(x, y, z) = 0 is satisfied.

Inversely, we assume Li
hj(x, y, z) = 0. Then the following equation

(1.7)
∂F i

hm

∂yj
(x, y)zm = −∂F i

hm

∂zj
(x, z)ym

is satisfied on any points (x, y, z). We take partial derivations by yl and zk of both sides,
respectively. Then we have

(1.8)
∂2F i

hk

∂yj∂yl
(x, y) = − ∂2F i

hl

∂zj∂zk
(x, z).

This means that the derivative of the second order by the second variable of the coefficient
F i
hj has no the second variable. Namely,

(1.9)
∂F i

hj

∂yk
(x, y) = Qi

hjkm(x)y
m

is satisfied.
On the other hand, F i

hj(x, y) is positively homogeneous of degree 0 with respect to the

variable y. So
∂F i

hj

∂yk
(x, y)yk = 0 is satisfied. Therefore we have

(1.10) Qi
hjkm(x)y

myk = 0.

The above quadratic form of y is satisfied on any y so Qi
hjkm(x) = 0 must be true.

Therefore we have
∂F i

hj

∂yk
(x, y) = 0. Namely,

(1.11) W i
hj(x, y, z) = 0

is satisfied.

Q.E.D.

In addition, according to the above proof, we have the following proposition.

Proposition 1.2 (Proposition 3.2 in [10]) Let FΓ = (N i
j(x, y), f

i
hj(x, y), C

i
hj(x, y)) be

a Finsler connection satisfying T i
rj = 0 and Di

j = 0. If W = 0 is satisfied on H, then
∂F i

hj

∂yk
(x, y) = 0, namely, F i

hj = F i
hk(x) is satisfied on TM .

Further, if we assume W i
hj(x, y, z) = 0 and Ki

hjk(x, y, z) = 0 on H, then we can prove
the following proposition.
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Proposition 1.3 (Proposition 3.3 in [10]) Let FΓ = (N i
j(x, y), f

i
hj(x, y), C

i
hj(x, y))

be a Finsler connection satisfying T i
rj = 0 and Di

j = 0. For any point (x, y, z) on H,
if W i

hj(x, y, z) = 0 and Ki
hjk(x, y, z) = 0 are satisfied, then the torsion tensor fields

P i
hj(x, y), R

i
hj(x, y), C

i
hj(x, y) and the curvature tensor fields Ri

hjk(x, y), P
i
hjk(x, y) of FΓ

satisfy the following equations:

(1.12) P i
hj(x, y) = 0, Ri

hj(x, y) = 0, P i
hjk(x, y) + Ci

hk|j(x, y) = 0, Ri
hjk(x, y) = 0.

Proof
Since Proposition 1.2,

∂F i
hj

∂yk
(x, y) = 0 is satisfied. From P i

hj =
∂N i

h

∂yj
− F i

jh and N i
j =

ymF i
mj(D = 0),

(1.13) P i
hj(x, y) = 0

is satisfied. Next, from
∂F i

hj

∂yk
= P i

hjk + C i
hk|j − Ci

hqP
q
jk and P i

hj = 0, we have

(1.14) P i
hjk(x, y) + C i

hk|j(x, y) = 0.

And from Ki
hjk(x, y, z) = 0, of course Ki

hjk(x, y, y) = 0 is satisfied. In addition, in
general, Ki

hjk(x, y, y) = Ri
hjk(x, y)− Ci

hm(x, y)R
m
jk(x, y) is true. So Ri

hjk − C i
hmR

m
jk = 0 is

satisfied. And from Ri
jk = ym(Ri

mjk − C i
msR

s
jk), we have

(1.15) Ri
jk(x, y) = 0.

We apply the above conclusion in Ri
hjk − Ci

hmR
m
jk = 0 again, then we obtain

(1.16) Ri
hjk(x, y) = 0.

Q.E.D.

For a Finsler space, the author stated in detail the conditions to be locally Minkowski
space in [8]. If we apply Proposition 1.3 to the Finsler space with the property of h-
metrical, then we have the following theorem.

Theorem 1.2 (Theorem 3.2 in [10]) Let (M,F, FΓ) be a Finsler space with the Finsler
connection FΓ = (N i

j(x, y), F
i
jk(x, y), C

i
jk(x, y)) satisfying T i

jk = 0, Di
j = 0 and gij|k = 0.

If W and K vanish on H, then the Finsler space (M,F, FΓ) is a locally Minkowski
space and the inverse property is also true.

2 The first and the second variations of arc lengths

Now we investigate the first and the second variations of arc lengths under the stand-
point of linear parallel displacements. Let p, q be points on M and let c(u) (u: arc length,
0 ≤ u ≤ L) be a curve from p to q. I is an open interval including the closed interval
[0, L], where p = c(0), q = c(L). Further Iϵ = (−ϵ, ϵ) is an infinitesimal open interval.
Then a variation α(u, v) is a differentiable map as follows:

(2.1) α : I × Iϵ −→ M ; ((u, v) −→ α(u, v) = (xi(u, v))),
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where α(u, 0) = c(u). Then αv(u) := α(u, v) with fixed v is called “variational curve”.

Further we denote vector fields ∂α
∂u

= ∂xi

∂u
∂
∂xi and ∂α

∂v
= ∂xi

∂v
∂
∂xi by ξ and η, respectively.

Namely, we put ξ = ∂α
∂u

and η = ∂α
∂v
. Especially, η is called “variational vector”. In

addition, we denote the coefficients of ξ and η by ξi := ∂xi

∂u
and ηi := ∂xi

∂v
, respectively.

First, from ∂2xi

∂u∂v
= ∂2xi

∂v∂u
we have very important relation as follows:

(2.2)
∂ξi

∂v
=

∂ηi

∂u
.

And on the curve c, we also have the following equations

(2.3) ξ = ċ =
dc

du
, F (c, ċ) =

√
gij(x, ċ)ċiċj = 1.

In addition, we use following notations
(2.4)
< ξ, ξ >ξ:=∥ ξ ∥2ξ= gij(x, ξ)ξ

iξj, < η, η >ξ:=∥ η ∥2ξ= gij(x, ξ)η
iηj, < ξ, η >ξ:= gij(x, ξ)ξ

iηj.

From (2.3) and (2.4), on c, we have

(2.5) < ċ, ċ >ċ=∥ ċ ∥2ċ= 1.

We assume that variation α(u, v) keeps the endpoints p, q fixed. Then variational
vector η(0, v) = η(L, v) = o are satisfied(See Figure 1). Here we put L(v) as the arc
length of a variational curve αv as follows:

(2.6) L(v) =

∫ L

0

F (α,
∂α

∂u
)du =

∫ L

0

√
gij(x, ξ)ξiξjdu.

Here we put the following definition.

Definition 2.1 The quantity L′(0) = dL
dv
|v=0 is called “first variation” of L(v) with

respect to the variation α and the curve c which satisfies L′(0) = 0 is called “extremal(or
critical) curve”.

Figure 1: Variation

We consider the following variational problems:
1. Find extremal curve out!
2. Investigate the minimality of the arc length for the extremal curve!
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For the above Problem 1, we need

(2.7) L′(v) =

∫ L

0

F ′du =

∫ L

0

∂F

∂v
du.

If we use, for (2.7), the following formations (2.8) ∼ (2.13):

F ′ =
∂F

∂xi

∂xi

∂v
+

∂F

∂ξi
∂ξi

∂v
=

∂F

∂xi
ηi +

∂F

∂ξi
∂ηi

∂u
,(2.8)

∂gλµ
∂yi

(x, ξ)ξλξµ = 0,(2.9)

∂F

∂xi
=

1

2F

∂F 2

∂xi
=

1

2F

∂

∂xi
(gλµ(x, ξ)ξ

λξµ) =
1

2F

∂gλµ
∂xi

(x, ξ)ξλξµ,(2.10)

∂F

∂ξi
=

1

2F

∂F 2

∂ξi
=

1

2F

∂

∂ξi
(gλµ(x, ξ)ξ

λξµ) =
1

2F
(
∂gλµ
∂yi

(x, ξ)ξλξµ + 2ξi) =
1

F
ξi,(2.11)

∇ξη
i :=

∂ηi

∂u
+ F i

αβ(x, ξ)ξ
αηβ,(2.12)

ξi = gij(x, ξ)ξ
j, gij|r = 0.(2.13)

then we can obtain

(2.14) F ′ =
1

F
ξi∇ξη

i.

From F ′ = 1
F
ξi∇ξη

i = 1
F
gij(x, ξ)ξ

j∇ξη
i = 1

F
< ξ,∇ξη >ξ, we obtain

(2.15) L′(v) =

∫ L

0

1

F
< ξ,∇ξη >ξ du,

and, on curve c, from v = 0, F = 1 and ξ = ċ, we have

(2.16) L′(0) =

∫ L

0

< ċ,∇ċη >ċ du.

In addition, from gij|k = 0 and
∂gij
∂yk

(c, ċ)ċi = 0, we have d
du

< ċ, η >ċ=< ∇ċċ, η >ċ + <
ċ,∇ċη >ċ. Therefore we can have

(2.17) L′(0) =< ċ, η >ċ |L0 −
∫ L

0

< ∇ċċ, η >ċ du.

At the end point, η(0, v) = η(L, v) = o are true. After all, we can obtain

(2.18) L′(0) = −
∫ L

0

< ∇ċċ, η >ċ du.

Therefore the following proposition is true.

Theorem 2.1 Geodesic(∇ċċ = 0) is an extremal curve. Inversely, for any variation
with fixed endpoints, if the curve is extremal, then it is a geodesic.
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Next, let’s investigate Problem 2. We must calculate the following expression.

(2.19) L′′(v) =

∫ L

0

F ′′du.

If we use, for (2.19), the following formations (2.20) ∼ (2.23):

F ′ =
1

F
gij(x, ξ)ξ

j∇ξη
i, F ′′ =

∂

∂v
(
1

F
gij(x, ξ)ξ

j∇ξη
i),(2.20)

∇ηξ
µ =

∂ξµ

∂v
+ F µ

αβ(x, η)η
αξβ, ∇ξη

µ =
∂ηµ

∂u
+ F µ

αβ(x, ξ)ξ
αηβ,(2.21)

∂ξµ

∂v
=

∂ηµ

∂u
, ∇ξη

µ = ∇ηξ
µ +W µ

αβ(x, ξ, η)ξ
αηβ,(2.22)

∇η∇ξη
λ =

∂

∂v
(∇ξη

λ) + F λ
αβ(x, η)η

α∇ξη
β, ξα = gδα(x, ξ)ξ

δ, gij|k = 0,(2.23)

then we can obtain

(2.24) F ′′ =
1

F
ξλ∇η∇ξη

λ + (
1

F
gλµ(x, ξ)−

1

F 3
ξλξµ)∇ξη

µ∇ξη
λ +Ψβλη

β∇ξη
λ,

where Ψβλ = 1
F
(Fα

βλ(x, ξ)− Fα
βλ(x, η))ξα = 1

F
Wα

βλ(x, ξ, η)ξα( ̸= 0).
On the curve c, v = 0, F = 1 and ξ = ċ are true. So we have

(2.25) F ′′ =< ċ,∇η∇ċη >ċ + ∥ ∇ċY ∥2ċ − < ċ,∇ċη >2
ċ + < ċ, w >ċ,

where w = (Wα
βλ(c, ċ, η)η

β∇ċη
λ).

Here, we need the following formation to arrange < ċ,∇η∇ċη >ċ,

∇η∇ċη
k −∇ċ∇ηη

k.

According to linear parallel displacements along the infinitesimal parallelogram, we have
the following formation

∇η∇ċη
k −∇ċ∇ηη

k = W k
hj(c, η, ċ)(η

j + ċj)ηh + Lk
hj(c, η, ċ)(ċ

j − ηj)ηh +Kk
hrj(c, η, ċ)ċ

rηjηh.

(2.26)

Let consider two parallel vector fields η −→ Πċη −→ ΠηΠċη and η −→ Πηη −→
ΠċΠηη along an infinitesimal parallelogram. Then the difference ΠηΠċη − ΠċΠηη is ex-
pressed as follows:

ΠηΠċη − ΠċΠηη

= [W k
hj(c, η, ċ)(η

j + ċj) + Lk
hj(c, η, ċ)(ċ

j − ηj) +Kk
hrj(c, η, ċ)ċ

rηj]ηh + · · · .

Now we denote by rk the difference ∇η∇ċη
k − ∇ċ∇ηη

k in (2.26). Then, from <
ċ,∇η∇ċη >ċ=< ċ,∇ċ∇ηη >ċ + < ċ, r >ċ, (2.25) turns into the following formation

(2.27) F ′′ =< ċ,∇ċ∇ηη >ċ + ∥ ∇ċη ∥2ċ − < ċ,∇ċη >2
ċ + < ċ, r + w >ċ .

Then we have

(2.28) L′′(0) =

∫ L

0

{
< ċ,∇ċ∇ηη >ċ + ∥ ∇ċη ∥2ċ − < ċ,∇ċη >2

ċ + < ċ, r + w >ċ

}
du.

Here we put the following definition.

8



Definition 2.2 The quantity L′′(0) in (2.28) is called “second variation” of L(v) with
respect to the variation α.

Furthermore, from d
du

< ċ,∇ηη >ċ=< ∇ċċ,∇ηη >ċ + < ċ,∇ċ∇ηη >ċ, we have
(2.29)

F ′′ =
d

du
< ċ,∇ηη >ċ − < ∇ċċ,∇ηη >ċ + ∥ ∇ċη ∥2ċ − < ċ,∇ċη >2

ċ + < ċ, r + w >ċ .

Therefore we can obtain
(2.30)

L′′(0) =< ċ,∇ηη >ċ |L0−
∫ L

0

< ∇ċċ,∇ηη >ċ du+

∫ L

0

{
∥ ∇ċη ∥2ċ − < ċ,∇ċη >2

ċ + < ċ, r + w >ċ

}
du.

Here we add an assumption “c is geodesic”, then we have

(2.31) L′′(0) =

∫ L

0

{
∥ ∇ċη ∥2ċ − < ċ,∇ċη >2

ċ + < ċ,R(ċ, η) >ċ

}
du, R(ċ, η) := r + w.

Furthermore, if Z := η− < ċ, η >ċ ċ, from < ċ, Z >ċ= 0, then ∇ċZ = ∇ċη− < ċ,∇ċη >ċ ċ
and ∥ ∇ċZ ∥2ċ=∥ ∇ċη ∥2ċ − < ċ,∇ċη >2

ċ are satisfied. After all we obtain

(2.32) L′′(0) =

∫ L

0

{
∥ ∇ċZ ∥2ċ + < ċ,R(ċ, η) >ċ

}
du,

and

(2.33) Rk(ċ, η) = W k
hj(c, η, ċ)η

h(ηj+ċj−∇ċη
j)+Lk

hj(c, η, ċ)η
h(ċj−ηj)+Kk

hrj(c, η, ċ)η
hċrηj.

Then we have

Theorem 2.2 Let α(u, v) be a variation that the curve c is a geodesic. Then the
second variation L′′(0) satisfies the equation (2.32) with R(ċ, η) of (2.33).

Theorem 2.3 We assume (2.32) and (2.33). Then
1. If the space is Riemannian, then R consists of Riemannian curvature Kk

αβi(c) only,

namely, Rk = Kk
αβi(c)η

αċβηi.
2. If the space is locally Minkowski, then R ≡ 0 is satisfied.
3. The set of spaces which satisfy R ≡ 0 involves Riemannian spaces and locally Minkowski
spaces.

Remark 2.1 If we use ∇ηξ
µ = ∂ξµ

∂v
+ F µ

αβ(x, ξ)η
αξβ(usual manner), then R leads us

to the well-known flag curvature.

Next we put the following definition.

Definition 2.3 We call the quantity −<ċ,R(ċ,η)>ċ

∥Z∥2ċ
“sectional curvature” with respect to

ċ and η at point c, and we denote it by ρ(ċ, η)ċ. Namely,

(2.34) ρ(ċ, η)ċ = −< ċ,R(ċ, η) >ċ

∥ Z ∥2ċ
(Z = η− < ċ, η >ċ ċ),
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where if Z = o, then ρ(ċ, η)ċ = 0. Then the second variation is modified to

(2.35) L′′(0) =

∫ L

0

{
∥ ∇ċZ ∥2ċ − ∥ Z ∥2ċ ρ(ċ, η)ċ

}
du.

In Riemannian geometry, there is the notion of “relatively minimal curve”. So we put
the notion in Finsler geometry as follows:

Definition 2.4 For any variation of a curve c, which keeps endpoints fixed, if the arc
length of c is always minimal for those of all variational curves, then c is called “relatively
minimal curve” with respect to the endpoints.

“We assume that variations have the property which its variational vector field on the
curve c is linearly independent to the tangent vector field ċ of c at least one point.”

Then we have

Theorem 2.4 If ρ(ċ, η)ċ ≤ 0 is satisfied on M , then any geodesic c is relatively min-
imal curve with respect to any endpoints on it.

Proof
We prove this property by a reduction to absurdity.

At first, from (2.35), we notice L′′(0) ≥ 0, ∥ ∇ċZ ∥2ċ≥ 0 and − ∥ Z ∥2ċ ρ(ċ, η)ċ ≥ 0.
If L′′(0) = 0 is satisfied, then we have ∥ ∇ċZ ∥2ċ= 0 and − ∥ Z ∥2ċ ρ(ċ, η)ċ = 0. From
∥ ∇ċZ ∥2ċ= 0,

(2.36) ∇ċZ = 0

is satisfied. We notice that Z is a parallel vector field along c in the sense of linear parallel
displacements from (2.36), and c is a geodesic. Therefore its norm ∥ Z ∥ċ is constant on
c. At a start point, η = 0 is satisfied, so ∥ Z ∥ċ= 0 holds good on c. Therefore Z is zero
vector field on c. Then

(2.37) η =< ċ, η >ċ ċ

is satisfied. Our assumption, however, can not permit (2.37) because Z and ċ are linearly
independent at least one point on c.
Therefore

(2.38) L′′(0) > 0

is satisfied.
This conclusion means that the geodesic c is minimal.

Q.E.D.
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